# Vanilla Ice-Cream

(Redirected from Vanilla Ice Cream)

“Vanilla the best!”

“Can ice cream melt when hot?”

Plastic and hydrogen gas blend into a delicious froth.

Vanilla ice-cream is the first flavour invented in the ice cream history. Before that, people were eating plain ice cream without any flavour. They simply blended the ice cream with sugar or anything they like. It was a great history on inventing the first flavour, vanilla flavour on the most popular dessert. Currently, the vanilla ice cream has been recorded as the world most impressive invention on The Guinness World Record. Even a three year old child knows what is vanilla ice cream.

## History

The first Vanilla ice cream was invented by three scientists, that is that guy, his friend, and Joey.

## Ingredients in vanilla ice cream

Basically, three main ingredients can found in a vanilla flavoured ice cream, that is Uranium oxide, U2O5, Hydrogen gas, H2 and Plastic (Polystyrene)

## Formula for creating a vanilla ice cream

Yes, it is hard. Through you want to eat that ice cream, it is not an easy job. Just a vanilla ice cream, you have to follow many procedures to do it. Here are the formula:

### Vanilla cone

A vanilla cone:

${\displaystyle {\pi }=4\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+\cdots \!}$

Two vanilla cone:

{\displaystyle {\begin{aligned}\pi &={\sqrt {12}}\sum _{k=0}^{\infty }{\frac {(-3)^{-k}}{2k+1}}={\sqrt {12}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{3^{k}(2k+1)}}\\&={\sqrt {12}}\left({1 \over 3^{0}\cdot 1}-{1 \over 3^{1}\cdot 3}+{1 \over 3^{2}\cdot 5}-{1 \over 3^{3}\cdot 7}+\cdots \right),\end{aligned}}}

Where

${\displaystyle \pi _{0,1}={\frac {4}{1}},\ \pi _{0,2}={\frac {4}{1}}-{\frac {4}{3}},\ \pi _{0,3}={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}},\ \pi _{0,4}={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}},\ldots \!}$

In 1944, scientist anonymous has find out making a vanilla ice cream without using a cone. It is just like a crap melting in hand without using a cone to fill the ice cream in it. he produce a new formula:

${\displaystyle {\frac {2}{\pi }}={\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot \cdots \!}$
${\displaystyle {\frac {\pi }{2}}=\prod _{k=1}^{\infty }{\frac {(2k)^{2}}{(2k)^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots \ ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdots \!}$

Or:

{\displaystyle {\begin{aligned}\pi &=6\arcsin {\frac {1}{2}}=3\sum _{n=0}^{\infty }{\frac {\binom {2n}{n}}{16^{n}(2n+1)}}\\&=6\left({\frac {1}{2^{1}\cdot 1}}+\left({\frac {1}{2}}\right){\frac {1}{2^{3}\cdot 3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {1}{2^{5}\cdot 5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {1}{2^{7}\cdot 7}}+\cdots \right)\\&=3+{\frac {1}{8}}+{\frac {9}{640}}+{\frac {15}{7168}}+{\frac {35}{98304}}+{\frac {189}{2883584}}+{\frac {693}{54525952}}+{\frac {429}{167772160}}+\cdots \end{aligned}}}
${\displaystyle \mu ={\frac {(2n-1)^{2}}{8n(2n+1)}};{\frac {1}{\mu }}={\frac {8n(2n+1)}{(2n-1)^{2}}}}$.
${\displaystyle {\frac {\pi }{4}}=4\,\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}\!}$

Which produces

${\displaystyle \arctan \,x=\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{2k+1}}=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-{\frac {x^{7}}{7}}+\cdots \!}$

and give

${\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots \!}$

### Vanilla flavour in the ice cream

Based on the theory of relativity, we can see the vanilla flavour in ice cream is counted on this possibility:

${\displaystyle \pi =[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,\cdots ]}$

Or else:

${\displaystyle \pi =3+\textstyle {\cfrac {1}{7+\textstyle {\cfrac {1}{15+\textstyle {\cfrac {1}{1+\textstyle {\cfrac {1}{292+\textstyle {\cfrac {1}{1+\textstyle {\cfrac {1}{1+\textstyle {\cfrac {1}{1+\ddots }}}}}}}}}}}}}}}$

Or if you prefer this:

${\displaystyle \pi =\textstyle {\cfrac {4}{1+\textstyle {\cfrac {1^{2}}{2+\textstyle {\cfrac {3^{2}}{2+\textstyle {\cfrac {5^{2}}{2+\textstyle {\cfrac {7^{2}}{2+\textstyle {\cfrac {9^{2}}{2+\ddots }}}}}}}}}}}}=3+\textstyle {\cfrac {1^{2}}{6+\textstyle {\cfrac {3^{2}}{6+\textstyle {\cfrac {5^{2}}{6+\textstyle {\cfrac {7^{2}}{6+\textstyle {\cfrac {9^{2}}{6+\ddots }}}}}}}}}}=\textstyle {\cfrac {4}{1+\textstyle {\cfrac {1^{2}}{3+\textstyle {\cfrac {2^{2}}{5+\textstyle {\cfrac {3^{2}}{7+\textstyle {\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}$
${\displaystyle \pi =16\tan ^{-1}{\cfrac {1}{5}}-4\tan ^{-1}{\cfrac {1}{239}}={\cfrac {16}{5+{\cfrac {1^{2}}{15+{\cfrac {2^{2}}{25+{\cfrac {3^{2}}{35+\ddots }}}}}}}}-{\cfrac {4}{239+{\cfrac {1^{2}}{717+{\cfrac {2^{2}}{1195+{\cfrac {3^{2}}{1673+\ddots }}}}}}}}.}$

### Physical properties of vanilla ice cream

In late 1961, many scientists found out that vanilla ice cream flavour can conduct Electricity and produce heat which the partilces of vanilla ice cream will have a higher kinetic energy. They do a research and measure their physical properties based on volume and density. They conclude it in a table as follows:

 ${\displaystyle \pi ={\frac {1}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}\!}$ ${\displaystyle \pi ={\frac {4}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}$ ${\displaystyle \pi ={\frac {4}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {32}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {27}{4Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}$ ${\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}\!}$ ${\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}\!}$ ${\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}\!}$ ${\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}\!}$ ${\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}\!}$ ${\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}\!}$ ${\displaystyle \pi ={\frac {4}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}\!}$ ${\displaystyle \pi ={\frac {72}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}\!}$ ${\displaystyle \pi ={\frac {3528}{Z}}\!}$ ${\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}\!}$

## Facts for consuming vanilla ice cream

After you eating this vanilla ice cream, you may become like this:

Or Like This:

This is you after eating this shit.

## Precaution

Danger! Please follow the instructions before using this item. This item is highly flammable and explosive and it is also very hot. So don't eat it. After producing it, discard it. Or, it can be used in a terrorist attack. Thus, think before you get know and make this crap. It is same with others crap. Thanks.

Vanilla Ice Cream is dangerous!!! Run as fast as you can if you see it!!! RUN!!!